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Abstract
TheYukon–Kuskokwim (YK)Delta is a region of discontinuous permafrost in the subarctic of
southwestern Alaska.Manywildfires have occurred in the YKDelta between 1971–2015, impacting
vegetation cover, surface soilmoisture, and the active layer.Herein, we demonstrate that the remotely
sensed active layer thickness (ReSALT) algorithm can resolve the post-fire active layer dynamics of
tundra permafrost.We generated a stack of Advanced LandObserving Satellite PhasedArray type
L-band Synthetic Aperture Radar interferograms over a study region in the YKDelta spanning
2007–2010.We applied ReSALT to this stack of interferograms tomeasure seasonal subsidence
associatedwith the freezing and thawing of the active layer and subsidence trends associatedwith
wildfire.We isolated twowildfire-induced subsidence signatures, associatedwith the active layer and
the permafrost layer.We demonstrate that InSAR is sensitive to increases in active layer thickness
followingwildfire, which recovers to pre-fire values after approximately 25 years. Simultaneously, we
show thatfire gradually thins the permafrost layer by 4m,which recovers to pre-fire thickness after
70 years.

1. Introduction

Air temperatures in high-latitude regions are increas-
ing at twice the global rate, which threatens the
distribution and stability of permafrost regions [1, 2].
Among terrestrial biomes, tundra and boreal ecosys-
tems underlain by permafrost contain the largest
below-ground carbon reservoirs globally [3], and these
regions are also significantly impacted by wildfires
[4, 5]. As air temperatures rise and regional climate
changes, wildfires are expected to increase in fre-
quency over the Arctic domain [6, 7]. Under favorable
environmental conditions, tundra regions are suscep-
tible to burn [8]. Wildfires rapidly transfer soil and

vegetation carbon into the atmosphere. More signifi-
cantly, post-fire increases in thaw depth facilitate
increased microbial decomposition and heterotrophic
respiration within the thawed soil column, which
gradually releases soil carbon to the atmosphere years
after thewildfire event [8–11]. Furthermore, terrestrial
arctic regions are thought to contain roughly twice the
amount of carbon currently in the atmosphere, so any
increases in wildfire frequency in the Arctic could have
amarked effect on the global carbon cycle [12].

Themaximum annual depth of thaw of surface soils,
denoted active layer thickness (ALT), is designated by the
World Meteorological Organization as an essential cli-
mate variable for monitoring the status of permafrost.
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The active layer plays a crucial role in surface processes,
surface hydrology, and vegetation succession; as perma-
frost thaws, decomposition and mineralization of pre-
viously frozen carbon can release large stores of carbon
into the atmosphere [9, 12]. Fire removes a portion of the
insulating organic layer, increasing theALT for years after
the fire [8, 13–15]. Regions with poor drainage, thick
organic layers, and fine-grained soil recover rapidly after
fire [15]. As the surface vegetation grows back after a fire,
the organic layer re-accumulates, and the ALT returns to
its pre-fire values [14–16]. However, how long this recov-
ery takes is poorly understood. As wildfire frequency is
expected to increase over arctic regions through the 21st
century, a more complete understanding of the interac-
tion between wildfire, permafrost, and active layer
dynamics is necessary.

In recent years, the remotely sensed active layer
thickness (ReSALT) algorithm was developed to study
the seasonal subsidence, subsidence trends, and ALT in
permafrost regions [17–19]. Soil water expands when it
freezes such that soil heaves up in fall when the active
layer freezes and subsides in summer when it thaws.
ReSALT uses the interferometric synthetic aperture
radar (InSAR) technique tomeasure surface subsidence
associated with this freezing and thawing of the active
layer. InSAR is a widely-used geophysical technique for
measuring surface deformation at high spatial resolu-
tion [20]. TheReSALT algorithmhas been used to char-
acterize ALT and thermokarst processes across the
arctic domain [17–19, 21]. In particular, ReSALT quan-
tified both the increase in seasonal subsidence andmelt-
ing of massive ground ice on the North Slope of Alaska
due to the 2007 Anaktuvuk fire [21, 22]. However, the
dynamics of post-fire response of the active layer and
permafrost column remainpoorly understood.

The Yukon–Kuskokwim (YK) Delta is a subarctic
lowland in the discontinuous permafrost zone dotted
with lakes, thaw ponds, and wetlands [23]. The YK
Delta represents an ecologically-driven permafrost sys-
tem where vegetation dynamics control the formation
of permafrost. Vegetation such as moss and grass and
the surface layer of organic material thermally insulate
the soil in summer, allowing the build up of a perma-
frost layer and controlling ALT [15, 24]. Major wildfires
have burned across the YK Delta many times over the
last hundred years. We focused on a wetland tundra
region within the Izaviknek Highlands approximately
80 km northwest of Bethel, Alaska that has experienced
more than 20 distinct wildfires since 1971 (figure 1).We
leveraged the high density of fire scars of various ages to
study ALT and permafrost thickness response after fire
using theReSALTalgorithm.

2.Methods

2.1. InSARprocessing
Using 8 repeat pass ALOS PALSAR FBS (wavelength
λ=23.6 cm) scenes acquiredbetween08/12/2007–01/

02/2010, we generated a stack of coregistered interfero-
grams over the YKDelta study region using the motion-
compensation processing algorithm developed in the
Stanford Radar Group [25]. We used the 5 m resolution
optical stereophotogrammetric ArcticDEM dataset to
remove the topographic phase term from all interfero-
grams. Interferograms were multilooked for increased
signal-to-noise ratio at the expense of spatial resolution,
and a Goldstein filter was applied to smooth out
interferogram phase noise and aid in phase unwrapping
[26]. Interferograms were then unwrapped using the
Snaphu algorithm described in [27], and deramped to
remove the best fit first-order orbital phase error [28].
Individual interferograms corrupted by ionospheric
noise or severe surface decorrelationwere removed from
the stack (see appendix B1 for a table of interferograms
used in the final analysis). As InSAR measures deforma-
tion in the line-of-sight (LOS) direction of the radar, an
LOS correction was applied to all interferograms to
decompose the deformation values into horizontal and
vertical orientations [28]. We masked consistently inco-
herent pixels from which precise deformation measure-
ments cannot be retrieved, which masked out major
lakes and waterbodies in the study region. As a reference
point, we chose an unburned location (61.354 4°
N,163.091 1°W; near site 2 in figure 1) where we
measured ALT in situ in 2016 and then applied our
frozen soil expansion model to determine the absolute
phase differenceswithin the InSARstack [18, 19].

We applied the ReSALT algorithm (described below;
seeA1 for adiagrammatic representation)on the14 inter-
ferograms listed in appendix B1. These interferograms
encompass scenes from the onset and end of summer
thaw, as well as winter freeze-up. In general, the use of
more interferogramswill result in amore robust solution.
Because snow cover is uncorrelated with time between
winter-summer and multiple year winter scene pairs, we
retain interferograms containing awinter scene that exhi-
bit surface correlation comparable to summer–summer
interferograms. Compared to the ALOS satellite, surface
decorrelation ismore severe for interferograms generated
by the ERS-1 andERS-2 satellites due to their longer tem-
poral baselines and relatively shorter wavelength
(λ≈5 cm versus λ≈23 cm). For this reason previous
applications of the ReSALT algorithm have discarded
winter scenes to avoid the potential for misinterpreting
spurious signals associated with snow cover [17, 18]. The
longer wavelength (λ≈23 cm) and shorter temporal
baseline of the ALOS PALSAR system used in this study
both mitigate surface decorrelation associated with win-
ter snow cover, though we note that their inclusion is a
potential sourceofuncertainty.

2.2. ReSALT retrieval algorithm
The ReSALT algorithm estimates seasonal subsidence,
subsidence trends, and ALT from remotely sensed
measurements of surface deformation. We include a
brief summary here for clarity, and refer readers to
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[18, 19] for a detailed description. The ReSALT
subsidence model consists of seasonal subsidence and
frost heave superimposed on a subsidence trend

(figure 2) . As the active layer thaws, ice in the soil
undergoes a phase change to liquid water, decreasing
in volume and causing the ground to subside [18].

Conversely, when the soil freezes in autumn and early
winter, water in the soil changes to ice and the ground
heaves. When the active layer freezes completely in
mid-winter, the heave stops. Thawing from the top
down, the thaw depth increases over time during
summer as the square root of cumulative degree days
of thawing, as shown by both observations and theory
[18, 19]. Conversely, frost heave in autumn follows the
square root of degree days of freezing. Seasonal
subsidence (E) is the ground height in winter minus
the height at maximum thaw at the end of summer
andR is the linear trend in subsidence.

The ReSALT deformation model results in a set of
linear equations for E, R and òtopo a topographic error
term that accounts for errors in the digital elevation
model [21]. This equation can be expressed in matrix
form as:

where δfi terms are InSAR measurements of sur-
face deformation (cm) for the ith interferogram,
t ti i2, 1,- are the differences in time between any two

Figure 1.The YKDelta field study area.Wildfire burn zones are shown in orange and labeled by year of burn. Blue dots are the
locations offield camps from the 2016field campaign; in situmeasurements of thaw depthweremade around these sites,
characterizing both unburned and burned regions in nearby fire scars (e.g. the 2006fire adjacent to site 5 and the 2007fire adjacent to
site 2).

Figure 2.Deformation is decomposed into seasonal sub-
sidence (E) due to seasonal freezing/thawing of the active
layer, and long-term trends in subsidence (R)due to thinning
of permafrost or thermokarst.
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scenes used to generate the ith interferogram,
ADDT ADDTi i2, 1,- are the differences in the

square root of the accumulated degree days of thaw
between the two scenes used to generate the ith inter-
ferogram, and Bperp is the spatial baseline of the ith
interferogram. These deformation components repre-
sent, respectively, long-term trends in subsidence (R
(cm yr−1); specifically associated with wildfire burn in
this study), deformation associated with the seasonal
freezing/thawing of the active layer (E (cm)), and an
error term associated with errors in the digital eleva-
tion model used (òtopo); see figure 2 for an illustration
of the difference between the seasonal subsidence and
the subsidence long-term trend. ADDT is calculated
from available air temperature records at Bethel,
Alaska, normalized such that the maximum value is
one at the end of the thaw season [18]. The ReSALT
algorithm solves for E, R, and òtopo on a pixel-by-pixel
basis using least-squares regression. This technique
represents a modification of the small baseline
subset algorithm originally formulated in [24] and
used extensively in InSAR time series analysis [29–32].
Uncertainty is the rootmean square error of the differ-
ences between the subsidence model and deforma-
tions from the interferogram stack [18, 19, 33].

ReSALT estimates ALT from seasonal subsidence
Eusing amodel of frozen soil expansion:

E PSdz, 2w i

i 0

ALT

ò
r r

r
=

-
( )

where P is soil porosity (m3m−3), S is soil moisture
fraction of saturation (−), z is depth (m), ρw is the
density of water (kg m−3), and ρi is the density of ice
(kg m−3) [18, 19]. We assume organic content and
thus P decrease exponentially with depth from pure
organic to pure mineral soil [18]. S represents the
fraction of soil pore space filled with water and is safely
assumed to be fully saturated soil on the YK Delta
(S=1). ALT is calculated using numerical integra-
tion, and uncertainty in ALT is estimated using
Gaussian error propagation of uncertainty inE [18].

2.3. Fire responsemodel
Fire increases ALTby removing insulating organicmatter
from the surface (figure 3). Grass, moss and dead organic
matter build up over time to create an organic layer that
insulates the soil from warm summer air temperatures,
thereby lessening seasonal thaw. Black soot increases
absorption of sunlight and fire removes part of the
organic layer, resulting in deeper summer thawand larger
ALT, and the potential for thinning of permafrost at
depth. Rapid vegetation regrowth after a fire eliminates
the albedo effect, but recovery of the organic layer takes
many years [34]. As the organic layer becomes thicker, its
insulating effect increases and the ALT recovers back to
pre-fire conditions [15].

We used the ReSALT output to create a fire
response model of seasonal subsidence and perma-
frost thickness. We assumed post-fire variations in the

seasonal subsidence result from variations in ALT,
while variations in subsidence trends result from
changes in permafrost thickness. Thermokarst sub-
sidence is minimal in the YK Delta because the soil
contains very little excess ground ice in the form of ice
wedges or layers [24, 35]. Satellite imagery shows the
2007 fires occurred several months before the first
ALOS scene, so all the fires in the study region occur-
red before the ALOS record.

To create a general permafrost thickness and ALT
response model, we performed a ‘space for time swap’
assuming variations in seasonal subsidence and sub-
sidence trends in burn scars result solely due to variations
in time since initial burn. This implicitly assumes that all
areas burned exhibit an identical fire response.We calcu-
lated themean ReSALT estimates of seasonal subsidence,
subsidence trend, ALT, and their associated uncertainties
within each fire zone, yielding 13 estimates of post-fire
seasonal subsidence and subsidence trend for 6 different
points in time. We applied a studentʼs t-test at 95% sig-
nificance to determine if values within the fire scars show
a significant difference to values outside the scars. We
generated twogeneral response functionsby sampling the
subsidence trend and seasonal subsidence of eachfire scar
at its respective time sinceburn, spanning1971–2007.We
performed a nonlinear least-squares best fit to the sub-
sidence trends with a simple quadratic model of fire
response:

R t a e c , 3fire
b t

1 1
1= +( ) ( )

where Rfire (cm yr−1) is fire response subsidence trend,
and a1, b1, and c1 are empirical coefficients. Integrating
equation (4) gives the subsidence response associated

Figure 3.A schematic offire response in permafrost [15].
(1) Fire removes vegetation and part of the surface organic
layer. (2)The removal of the insulating organic layer and
change in albedo surface increases energy into the soil. (3)The
ALT increases over several years. (4)ALT reaches amaximum.
(5)The organic layer gradually thickens as a result of
vegetation growth and theALTdecreases. (6)The permafrost
system returns to pre-fire conditions.
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withRfire:

D t R d a e c d , 4fire
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fire
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0 0
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where Dfire (cm) is the fire response subsidence
associated with the Dfire. Similarly, we estimated the
fire response of seasonal subsidence with a nonlinear
least-squaresfit to amodel of the form:

E t a e c t d , 5fire
b t

2 2 2
2= + +( ) ( )

where Efire (cm) is the fire response in seasonal
subsidence, and a2, b2, c2, and d2 are empirical
coefficients that determine the quadratic response of
the seasonal subsidence as a function of time. This
function corresponds to the integral of the subsidence
trend model in equation (4) so that we can compare
Efire and Dfire. Because E only correlates with recent
burns, we fit equation (6) to fire burns from
1991–2007, as the seasonal subsidence of older fires is
statistically indistinguishable from unburned perma-
frost (see results). For both response functions, we
calculate the two-norm of the residuals from the least-
squares solution, the two-norm of the data uncer-
tainty, and treat these two error sources as dependent
uncertainties.

2.4. Field validation and calibration
We validated the ReSALT estimates of ALT with field
measurements from a 2016 summer field campaign. The
standard technique for measuring ALT in the field is by
mechanical probing of the active layer [36]. In addition,
we employed field geophysical instruments such as
ground-penetrating radars (GPRs) to image the perma-
frost table, which exhibits a sharp discontinuity in
dielectric constant [37]. We collected probing measure-
ments and GPR transects in late August based out of 6
sites within the study region (figure 1). From these sites,
we sampled 2006 and 2007 burn scars and unburned
tundra by dragging the GPR along the tundra surface
[19]. A total of 24 km of GPR transect data was collected,
encompassing approximately 12 km of data over burned
and unburned tundra each. We made contemporaneous
calibration probing measurements to estimate radar
velocities, from which the ALT can be directly estimated
from the two-way travel time of the radar. For calibration
of ReSALT, we chose field measurements made in areas
unaffected by wildfire, under the assumption that these
unburned regions appear stable over the time period of
interest. To assess the agreement between the ReSALT
andGPRALT values, we averaged all GPR traces within a
single ReSALT pixel, and compared the absolute value
difference between the GPR and ReSALT measurements
using theχ2 statistic [19]:

ALT ALT
, 62 ReSALT GPR

GPR

2


c =

-⎛
⎝⎜

⎞
⎠⎟ ( )

where ALTGPR is the in situ ALT measured by GPR,
ALTReSALT is the ReSALT-estimated ALT, and òGPR is the
uncertainty in ALTGPR. An ideal match occurs when

χ2<1, indicating ReSALT and GPR values agree within
uncertainty and are statistically identical. A good match
occurs when the uncertainty bars overlap (1<χ2<2).
A poor match occurs when the uncertainty bars do not
overlap (χ2>2). Variation within these categories has
no physical meaning: a χ2 of 0.5 is not better than 0.9,
sinceboth are statistically identical.

3. Results

ReSALTmeasurements reveal a complex history of the
effects of wildfires on permafrost and active layer
dynamics. Fire zones appear as spatial anomalies in
subsidence trends that are statistically significantly
different from the surrounding, undisturbed tundra
with low or uniform subsidence trends (figure 4(a)).
Recent fires exhibit large positive subsidence trends
corresponding to subsidence while older fires exhibit
negative subsidence trends corresponding to uplift.
This pattern appears consistent with a post-fire phase
of permafrost degradation and thinning, followed by a
more gradual recovery phase. The spatiotemporal
correlation of the subsidence trends with wildfire scars
suggests that the transitory effect of wildfire on
permafrost can induce thinning of permafrost for
decades after the fire, and that we can measure this
signal with ReSALT. The subsidence trends within fire
scars compare favorably to rates of permafrost degra-
dation estimated by Schur and Jorgenson in a dis-
turbed ecosystem-driven permafrost system [15].
Additionally, the response appears consistent with
modeling efforts to understand the effect of wildfire on
permafrost in lowland boreal forests [38]. Subsidence
trends for an ecosystem-driven permafrost region in
thermal equilibrium are expected to be small [15].

The seasonal subsidence shows a characteristic pat-
tern corresponding to raised peat plateaus and separated
by thermokarst gullies (figure 4(c)). In general, the gullies
have larger seasonal subsidence than thepeat plateausdue
to higher water content. The peat plateaus appeared uni-
formly flat and raised above the gullies by about three
meters. The thickness of permafrost in the YK delta was
previously estimated to be 10m under 1m peat plateaus,
assuming a soil column of water ice [39]. We observed
peat plateaus ranging from1–3m inheight,which is con-
sistent with soil expansion of 25–74 m of permafrost
(equation (2), P=0.45 for a typical silty soil). However,
we typically couldnot detect the permafrost tablewith the
metal probes orGPRwithin the gullies indicating no per-
mafrost at all or the presence of a thick layer of unfrozen
soil known as a talik. Essentially, we see permafrost under
the peat plateaus and no permafrost in the gullies.
ReSALT readily detects seasonal subsidence due to active
layer thaw over permafrost on the plateaus and due to
freezing of surface soils in non-permafrost soils in the
gullies.
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Like in R, the fire scars also appear as spatial
anomalies in seasonal subsidence. The most recent
fires show large, statistically significant differences
with the surrounding, undisturbed tundra. However,
the oldest fires show seasonal subsidence statistically
identical to their unburned surroundings. This sug-
gests wildfire has a more transient effect on seasonal
subsidence than subsidence trends.

ALT shows the same mottled pattern as the seaso-
nal subsidence, with larger values in the gullies and
smaller values on the plateaus (figure 4(c)). However,
our field measurements indicate no permafrost in the
gullies. What ReSALT measures as ALT in the gullies
actually represents the thickness of the seasonally fro-
zen surface layer in non-permafrost soil. Like the sea-
sonal subsidence, we see statistically significant spatial
anomalies in themore recent fires, but not for the old-
est fires, suggesting ALT recovers from wildfires
quicker than subsidence trends.

Comparison of ReSALT andGPRmeasurements of
ALT yields ideal matches for 53% of the data and good

matches for 13% of the data (figure 5). An ideal match
indicates the ReSALT and GPR values are statistically
identical and a good match indicates the uncertainty
bars overlap. ReSALT and GPR agreed in the unburned
tundra, but not in the 2007 fire zones. The ALOS data
starts immediately after the 2007 fire so that the inter-
ferogram stack reflects the pre-recovery stage of the fire
response model (steps 1–3 of figure 3) [14]. We made
the GPR measurements in 2016, nine years after fire
and reflecting the last stages offire recovery of the active
layer. The ReSALTALT shows a positive bias relative to
GPR values in the 2007 fire zone, consistent with nine
years of recovery after thefire.

The incorporation of scenes from either outside
the thaw season, or in the uplift seasonmay necessitate
a more physically realistic model of seasonal sub-
sidence than the one used in this work, as noted in.
Recently, Hu et al introduced a composite index that
encapsulates both the thaw subsidence and freeze
uplift of permafrost, and demonstrated agreement
with GPS reflectometry data [40]. Modifying the

Figure 4.Results from application of the ReSALT algorithm to the YK study region. (a)ReSALT-derived long-term subsidence trend,
positive values correspond to an increase in thawdepth (cm yr−1). (b)Uncertainties in long-term trends. (c)ReSALT-derived average
seasonal subsidence from 2007–2010 (cm yr−1). (d)Uncertainties in seasonal subsidence. (e)ReSALT-derived ALT (cm).
(f)Uncertainties in ALT (cm). Of particular note are the large positive trends in recent burn areas from the 2000s, and negative trends
in regions that were burned in the 1970s.Wildfires are outlined in gray, and a red box surrounds thefire scar discussed infigure 5.
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ReSALT algorithm to consider both freezing and
thawing indices is the subject of future work. Addi-
tionally, large seasonal variations in volumetric water
content and saturation can be falsely interpreted as
deformation signals [38]. Incorporation of indepen-
dent observations of soil moisture into the ReSALT
algorithm is an important piece of future work, as the
ReSALT algorithm does not currently take into

consideration spatial or temporal variability of volu-
metric water content. In general, the use ofmore inter-
ferograms leads to more robust solutions with the
ReSALT algorithm. The launch of the NiSAR mission
in 2021 will allow for the collection of L-band
(λ≈23 cm) SAR imagery suitable for InSAR at
6–12 d repeat intervalsa significant improvement to
the repeat interval of the ALOS satellite. This will allow

Figure 5.Comparison betweenGPR and InSAR estimates of ALT at site 5. Left: total path ofGPR, color coded based upon the result of
theχ2 test. Right: correlation between theGPR and InSAR estimates of ALT, r=0.6410. Both techniques capture fine spatial
variability of ALT and yieldmutually consistent results in unburned tundra, while there is little agreement in the region affected by the
2006fire (bottomhalf of the survey).

Figure 6.Top: exponential bestfit to subsidence trends, exhibiting an increase in permafrost thinning for the first two decades after
fire, followed by amore gradual thickening as the permafrost slowly reforms.Dotted line represents 0 subsidence trend; the
intersection of the subsidence trendwith the 0 trend line corresponds to the beginning of permafrost recovery. Bottom: Integral-
Exponential bestfit to seasonal subsidence, exhibiting an increase in seasonal thaw depth for thefirst decade after fire, and a total
recovery of approximately 16 years. Dotted line corresponds to a pre-fire seasonal subsidence of 3 cm.
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formore accurate characterization of the seasonal sub-
sidence and subsidence trends of permafrost regions.

Our fire response models indicate seasonal sub-
sidence and ALT recover much faster than subsidence
trends after a fire (figure 6). The seasonal subsidence
response appears consistentwith aprevious studyof post-
fire active layer dynamics in the Canadian tundra [14].
Immediately after a fire, the seasonal subsidence experi-
ences a gradual increase for approximately a decade
reflecting deeper seasonal thaw depths. The seasonal sub-
sidence then reverses sign as the organic layer gradually
re-accumulates and the thaw depth decreases [8, 14, 15].
After 15 years, the seasonal subsidence returns to its pre-
fire thermal equilibrium. As expected, ALT reflects seaso-
nal subsidence and returns to pre-fire values after 15 years
(not shown). In contrast, subsidence trends show amuch
longer response, changing from positive to negative at 25
years, indicating a change from subsidence to heave, and
eventually returning to zero after 65–70years.

4.Discussion

ReSALT measures two separate, but related responses
to fire: active layer thickening and permafrost thinning
(figure 7). The integral of the subsidence trend
response model (equation (5)) represents the impact
of fire on permafrost thickness. The seasonal sub-
sidence response model represents the impact of fire
on the thickness of the active layer. The removal of
vegetation and organic material by fire increases
energy absorption by the ground, which will increase
ALT, seasonal subsidence, and the permafrost temper-
ature. The thickness of permafrost balances freezing
from the surface and warming from the Earth’s
interior, so any increase in permafrost temperature
would result in a thinning of the permafrost layer.

Both fire response models show two distinct pha-
ses: a perturbation phase and a recovery phase. Both
response curves start at zero, which represents pre-fire

thermal equilibrium conditions. In the perturbation
phase, the subsidence increases from zero to a max-
imum value. In the recovery phase, the subsidence
slowly decreases back to zero or pre-fire conditions.
Both response models show a recovery phase approxi-
mately twice as long as the perturbation phase.

Fire increases the thickness of the active layer,
resulting in an increase in seasonal subsidence. The
perturbation phases lasts≈5 years and peaks at 1.7 cm,
which, using our soil expansionmodel, corresponds to
a 26 cm increase in ALT. The ALT response model
shows consistent results (not shown). The vegetation
grows back quickly, eliminating the albedo effect and
stopping the increase in ALT after ≈5 years. This
appears consistent with the rapid post-fire vegetation
regrowth associated with tundra fires [41]. In the
recovery phase, which lasts ≈10 years, the vegetation
and organic layer thicken, insulating the soil and
decreasing ALT and seasonal subsidence. After 15±
7 years, the organic layer returns to per-fire condi-
tions, alongwithALT and seasonal subsidence.

Fire raises the temperature of the permafrost layer,
thinning the permafrost layer [8]. A warm temperature
anomaly introduced at the surface takes years to prop-
agate downward throughout the soil column [42]. The
subsidence responsemodel peaks at 20 cm about 25 years
after a fire. If we assume this susbsidence is describable
entirely by the soil physics model we have employed, for
an initial permafrost thickness of 25m of saturated silty
soil with a porosity of 45%, 20 cm of subsidence corre-
sponds to a thinning of the permafrost by≈5m, or 20%.
Such subsidence cannot result from increases in active
layer thaw depth, which would correspond to an increase
in ALT of≈5 m, which we do not observe. Some of this
subsidencemay be due to soil compaction, for which our
soil physics model does not account. These estimates of
permafrost thinning thus represent an upper bound
estimate.

Figure 7.Comparison of the best-fitting seasonal subsidence (equation (3); red) and the integrated subsidence trend (equation (5);
blue) induced bywildfire, with their associated uncertainties in gray. These deformations are associatedwith, respectively, variations
in the seasonal thaw depth of the active layer, and thinning of permafrost. These two processes occur over 15±7 years, and 66±5
years, respectively.
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The permafrost thinning response depends on the
seasonal subsidence response, but takes approximately
five times longer. The seasonal subsidence and ALT
response depends on energy balance in the summer, but
the permafrost thinning depends on annual energy bal-
ance. The permafrost thinning cannot peak until the sea-
sonal subsidence and ALT peak, but lags due to the time
required to propagate temperature anomalies. As a result,
seasonal subsidence and ALT peak after 5 years, but per-
mafrost thinning peaks after 25 years. Seasonal sub-
sidence and ALT return to pre-fire conditions after
15±7 years, but permafrost thickness returns to pre-fire
conditions after 66±5years.

Our results emphasize the importance of ecological
processes in controlling permafrost dynamics, where
local vegetation plays a significant role in the thermal
insulation of permafrost and the post-fire response
[15, 43]. Removal of surface vegetation and a fraction of
the overlying organic layer of the active layer by wildfire
modifies the thermal insulation and albedoof the surface,
making permafrost susceptible to a deeper seasonal thaw
depth. In areas with a thick organic layer, poor drainage
and fine-grained soil, the permafrost system can even-
tually return to its pre-fire equilibrium state, or reach a
new thermal equilibrium [41]. This response is driven by
the gradual re-accumulation of an organic layer as a by-
product of the ecological regrowth of the surface vegeta-
tion, which insulates the permafrost and gradually
decreases the seasonal thaw depth of the active layer
[15, 44]. Simultaneously, wildfires induce a thinning of
permafrost; the recovery time scales between active layer
andpermafrost differ by almost a factor offive, and thick-
ening of the permafrost is first contingent upon the total
recoveryof the active layer. Post-fire active layer dynamics
are different in different permafrost regimes, such as
black spruce forests, where fire can initiate irreversible
permafrost degradation [15, 45]. However, as a demon-
stration of technique, we illustrate that ReSALT can suc-
cessfully infer and discriminate between post-fire
permafrost and active layer dynamics of permafrost. In
the future, this technique should be extended to other

regions under different permafrost and climatic regimes
to further constrain post-fire permafrost active layer
dynamics as a function of permafrost regime and fire
severity.

5. Conclusions

Fire in the YK Delta increases seasonal subsidence and
ALT while simultaneously thinning the permafrost layer.
We applied the ReSALT algorithm to the YK Delta to
estimate seasonal subsidence, subsidence trends, ALT,
and uncertainties. ALT ranges from 10–120 cm, and
correlates with surface geomorphology. We compared
the ReSALT and GPR measurements of ALT agree for
68% of the pixels, with higher agreement in undisturbed
tundra than in fire zones. Using burn scars and fire ages,
we constructedfire responsemodels. Seasonal subsidence
and ALT response to fire peaks at 5 years and returns to
pre-fire conditions after 15±7 years. The peak seasonal
subsidence response is 1.7 cm corresponding to an
increase in ALT of 26 cm. The permafrost thins in
response to fire, with a peak at 25 years and a recovery to
pre-fire conditions after 66±5 years. The peak sub-
sidence associated with permafrost thinning was 20 cm,
corresponding to a thinning of the permafrost layer
by5m.
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AppendixA.

Appendix B.

Table B1. InSAR scene pairs used in this study.

Interferogram Date 1 Date 2 Scene 1 Scene 2 Time Perpendicular

# span (days) baseline (m)

1 20070812 20070927 ALPSRP082461220 ALPSRP089171220 46 389

2 20070812 20071228 ALPSRP082461220 ALPSRP102591220 138 2514

3 20070812 20080814 ALPSRP082461220 ALPSRP136141220 368 −5003

4 20070812 20100102 ALPSRP082461220 ALPSRP209951220 874 −27

5 20070927 20071228 ALPSRP089171220 ALPSRP102591220 92 1544

6 20070927 20100102 ALPSRP089171220 ALPSRP209951220 828 −997

7 20071228 20080212 ALPSRP102591220 ALPSRP109301220 46 1034

8 20071228 20081230 ALPSRP102591220 ALPSRP156271220 368 −4408

9 20071228 20090214 ALPSRP102591220 ALPSRP162981220 414 −3527

10 20071228 20100102 ALPSRP102591220 ALPSRP209951220 736 −1137

11 20080212 20100102 ALPSRP109301220 ALPSRP209951220 690 −2171

12 20081230 20090214 ALPSRP156271220 ALPSRP162981220 46 881

13 20081230 20100102 ALPSRP156271220 ALPSRP209951220 368 3271

14 20090214 20100102 ALPSRP162981220 ALPSRP209951220 322 2390

Figure A1.Diagramof processing applied to InSARdata as described in theMethods. Data at various levels of processing are in blue;
processing steps described in 3.1 are in orange; Processing steps described in 3.2 are in green; processing steps described in 3.3 are in
pink.
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